If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=784-16H^2
We move all terms to the left:
(H)-(784-16H^2)=0
We get rid of parentheses
16H^2+H-784=0
a = 16; b = 1; c = -784;
Δ = b2-4ac
Δ = 12-4·16·(-784)
Δ = 50177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{50177}}{2*16}=\frac{-1-\sqrt{50177}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{50177}}{2*16}=\frac{-1+\sqrt{50177}}{32} $
| -3+(4-2x)-(1-x)=4x-2(x-3) | | -8=4-2d | | 2/3g+5=17 | | 3×-2=18-2x | | 100k+7/15=8 | | -(8x-3)+6x-6=-3 | | -0.9(0.32-3x)=3x | | (2x-4)^3=150 | | F(x)=x^2-26x+169 | | 5(3x+4)-6=0)2x-3-(6x+2) | | 10-6c=4 | | p=30/11 | | 8(-+m)+3=2(m-11/2) | | 8(-+m)+3=2(m-5.5) | | -7x^2-11=-123 | | 8(-+m)+3=2(m-51/2) | | 5x+1/2=12 | | 3x+5+x=2x+6 | | 84=(x+3+x-1)x-1 | | .128b=5 | | 14=(2(1/2y+3)-3)*(1/2y+3)) | | 87-1x=103-9x | | 3(b+5)^2-8=4 | | 2(3x-5)^2=8 | | x+2+2+3=4x | | 7+x=2(4x-3) | | .5p=5+p | | 2(x+5)=x+10+2x | | 3x+2=7+x=5 | | 100=3t^2+20t | | x+7/14=1-3/7x | | 10h-7=-9-26 |